一、 斷路器不能合閘 。原因分析:1、 欠壓線圈不工作(電壓正常)。 解決辦法:更換欠壓線圈。。2、 按下合閘按鈕,合閘線圈得電不工作。唐山MNS型交流低壓柜公司 解決辦法:更換欠壓線圈 。3、 合閘按鈕接觸不良 。解決辦法:更換合閘按鈕。4、 控制回路熔芯燒壞 。解決辦法:確認控制回路正常無短路后更換熔芯。5、 斷路器未儲能 。解決辦法:檢查電動機控制電源電壓必須≥ 85%。唐山MNS型交流低壓柜公司6、 合閘電磁鐵控制電源電電壓小于 85% 。解決辦法:合閘電磁鐵電源電壓必須≥ 85% 。7、 合閘電磁鐵已損壞 。解決辦法:更換合閘電磁鐵。8、 抽屜式斷路器二次回路接觸不良。 解決辦法:把抽屜式斷路器搖出后,重新搖到“接通”位置。 檢查二次回路是否連接可靠。9、 萬能轉換開關在停止位 。解決辦法:將開關轉到左送電或右送電處。
(1)垂直度,偏差不大于1.5mm/m。(2)水平度,相鄰兩盤頂部偏差不大于1mm,成排盤頂部不大于3mm。(3)盤面不平度,相鄰兩盤面偏差不大于1mm,成排盤面不大于5mm。(4)盤間接縫應小于2mm。專業MNS型交流低壓柜公司(5)配電盤面應光滑并涂漆,框架牢固,盤上設備排列和配線應整齊美觀,做到“橫平豎直”。開關應垂直安裝,上端接電源,下端接負荷,相序也應一致;各分路應標明線路名稱。(6)固定在配電盤頂上的硬裸鋁母線,對地面的距離不應小于1.9m,專業MNS型交流低壓柜公司不同相帶電部分之間的距離不應小于50mm。(7)配電盤上的二次回路,應采用電壓不低于500V的銅芯絕緣導線,電流回路截面不應小于2.5mm2。其他回路不應小于1.5mm2。(8)配電盤上如裝設計費用電能表,表用互感器的準確度不應低于0.5級,對于容量較大的配電變壓器應裝電流表和電壓表。(9)配電盤上應裝設剩余電流動作保護器。(10)屏體內設備與各構件連接應牢固。低壓配電盤的安裝要求及注意事項低壓配電盤安裝注意事項(1)配電盤(箱)的盤面應光滑(涂漆),且有明顯的標志,盤架應牢固。(2)明裝在墻上的配電盤,盤底距地面高度不小于1.2m,電度表應裝在盤上方,距地面1.8m:明裝立式鐵架盤,盤頂距地面高度不得大于2.1m,盤底距地面不得小于0.4m,盤后面距墻不得小于0.6m;暗裝配電盤底口距地面1.4m。(3)操作不頻繁的一般照明配電盤,若負荷電流在60A及以下,可不包鐵皮。但對操作較頻繁的照明配電盤都應包鐵皮。(4)動力配電盤的負荷電流在30A以上,應包鐵皮。對負荷電流為30A及以下的配電盤,裝有金屬保護外殼的開關,可不包鐵皮。(5)如果是木制配電盤(箱),當開關電器的電流較大(照明盤大于60A、動力盤大于30A)或操作頻繁的照明盤和易燃場所的配電盤,應加包鐵皮。(6)凡安裝于重要負荷及易燃場所的配電盤(箱),不論負荷電流大小,都應采用鐵盤或木盤包鐵皮。(7)配電盤(箱)接地應可靠,其接地電阻應不大于4Ω。(8)主配線應采用與引入線截面相同的絕緣線;二次配線應橫平豎直、整齊美觀,應使用截面不小于1.5mm2的銅芯絕緣線或不小于2.5mm2的鋁芯絕緣線。(9)導線穿過木盤面時,應套上瓷套管,穿過鐵盤面時應裝橡皮護圈。
戶內安裝,開啟式雙面維護的低壓配電裝置。 配電柜的基本結構采用鋼板及角鋼焊接組合而成。柜前有門,柜面上方有儀表板,專業MNS型交流低壓柜公司為可開啟的小門,可裝設指示儀表。并列拼裝的柜,柜與柜間加有隔板,減少了由于單柜內因故障而擴大事故的可能。柜后骨架上方有主母線安裝子絕緣框上,唐山MNS型交流低壓柜公司并設有母線防護罩,防止上方墜落金屬物體造成主母線短路的惡性事故。中性母線裝置在柜下方的絕緣子上,保護接地系統的主接地點焊接在骨架的下方,儀表門也有接地點與殼體互連。PGL型交流低壓配電屏分為:低壓計量柜、低壓進線柜,電容補償柜、市發電轉換柜、母線聯絡柜、低壓出線柜。
1、基頻以下調速:磁場定向控制:磁場定向,即在d-q坐標系下,電機參數中,如勵磁電流,影響力矩的部分,是參數投影到q軸的分量。專業MNS型交流低壓柜而投影到d軸上的部分,則不必考慮,即通常所說的id=0方法。此方法下,電機最大輸出轉速的決定因素是控制器最高供電電壓。磁場定向控制策略的局限在于,不能體現勵磁電流影響磁場的部分參數變化,因此不能進行弱磁控制。2、基頻以上調速:直接轉矩法,MNS型交流低壓柜公司出發點是想要通過控制轉矩公式中的參數去直接對轉矩輸出值產生影響。選擇矩角作為控制對象。以內置式轉子永磁同步電機為例,說明具體方法。在電源電壓和定子磁場頻率恒定的情況下,電機實時輸出轉矩,與矩角的正弦值成正比。可以在離線狀態下,計算每個轉矩角對應的電磁轉矩值,形成一張矢量表,存放在上位機。在電機控制器運行過程中,實時觀測轉矩和轉矩角,并提取表格中的原始值進行比對。發現與表格的值有出入,則調整電源電壓值,進行轉矩修正。直接轉矩法,魯棒性好,算法簡單,并且不需要坐標變換,在早期是應用較多的一種控制方法。但這種方法在低轉速情況下,控制精度急劇下降。因此可以選擇僅在基頻以下使用。3、最大力矩電流比控制策略:將電流在d-q坐標系下解耦,再分別求取每個分量的轉矩電流最大比,目的是獲得確定勵磁電流下的最大轉矩。用求取二階導數的方式確定極大值的存在性。在調速區間內,對轉矩電流比求導,二階導數小于0,則轉矩電流比最大值存在。